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ABSTRACT 

This article studied the application of ridge regression on multicollinear data whose ridge parameter was 

determined using bootstrap samples. Mean squared error of the samples and some arbitrary values were used to determine 

the ridge parameter that will give the minimum residual. The result of the study revealed that both the mean squared error 

and the smallest eigenvalue of the predictor variables of the original data play vital role in determining the ridge parameter 

of ridge regression. 
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1.0 INTRODUCTION  

The observations in many experiments of physical and medical sciences are often ill-conditioned. Their 

distribution can be highly skewed, they can have tail thicker than that of normal distribution, and random samples often 

have outliers and correlated variables. Outliers, correlated variables and heavy-tailed distribution are serious problems 

because they inflate the standard error of the estimates, causing them to have relatively low power. In regression analysis, 

when the predictor variables X=�X�, … , X�� have X′X  that is of full rank least squares estimators are usually unbiased, The 

Gauss-Markov property assures us that the LS estimator has minimum variance in the class of unbiased linear estimators. 

Ordinary least squares regression is usually affected by outliers, multicollinearity, as well as skewed or heavy tailed 

distributions. When the method of least squares is applied to nonothogonal variables, very poor estimates of the regression 

coefficients are usually obtained. The variance of the estimates of the regression coefficients may be considerably inflated, 

and the length of the vector of coefficients too long on the average and very unstable. One of the common techniques to 

overcome the difficulty of least squares when the data is ill-conditioned is to drop the basic assumption of regression 

analysis that the estimators of regression coefficients be unbiased. Ridge regression is one of the biased estimators of 

regression coefficients that is applied to data whose predictor variables have X′X matrix that is ill-conditioned (near 

singular) or even singular (has zero eigenvalues). In this article ridge regression will be applied to multicollinear real data 

whose ridge parameter will be determined using bootstrap samples. j 

2.0 RIDGE REGRESSION 

A method of regression analysis that is effective in the presence of multicollinearity was proposed by Hoerl and 

Kennard (1970) and is called ridged regression. Assuming that the data (X and Y) have been standardized, they suggested 

that some constant values will be added to diagonal elements of the	X′X matrix of the predictor variables to have regression 

coefficient that can be estimated from the modified normal equations, hereafter called ridged equation 

  
X�X + kI�b
k� = X�y																																																																																																																																																																1 
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from which the regression coefficients can be estimated. 

Making b
k� the subject of the formula in (1) gives  

 b
k� = 
X�X + kI���X�y																																																																																																																																																												2 

with k ≥ 0, the nonstochastic quantity, being the ridge (or control) parameter. Of course  b
0� = b is the OLS 

estimate. b
k� = �b�
k�, … , b�
k��′ contain estimates of the parameters in the non-intercept part of the model.  

Multiplying both sides of (2) by 
X′X��� we have that 

 b
k� = 
I + k
X′X����β�																																																																																																																																																													3 

where β� denotes the LS estimate in standard form. The equation (3) shows that the ridge estimator is biased and 

the amount of bias depends on the ridge (or the control) parameter k. 

Using the abbreviation 

 G� = 
X�X + kI���																																																																																																																																																																								4 

 E�b
k��, Bias
b
k�, β�	  and  V�b
k�� can be expressed as follows 

 E�b
k��  

 E�b
k�� = E

X�X + kI���X�y�\ 
  = 
X�X + kI���X�E
y� 
  = 
X�X + kI���X�Xβ          

 	= G�X�Xβ																																																																																																																																																																																									5 

 Bias
b
k�, β�  
 Bias
b
k�, β� = E
b
k� − β� 
         = G�X�Xβ − β 

      								= 
X�X + kI���X�Xβ − β 

                       = ()(*

()(+�,� − β 

  = ()(*�*�()(+�,�

()(+�,�  

																			= −kβG�																																																																																																																																																																																								6	 
 	V�b
k��  

 V�b
k�� = var

X�X + kI���X�y� 
  = var
G�X�y� 

=G�X�var
y�XG� 
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 = σ1G�X�XG�																																																																																																																																																																																	7 

Hence the Mean Dispersion Error (MDE) matrix is  

 M
b
k�, β� = E
b
k� − β�
b
k� − β�� 

 = E 45b
k� − E�b
k��6 + �E�b
k�� − β�7 45b
k� − E�b
k��6 + �E�b
k�� − β�7� 

 = E48b
k� − E�b
k��98b
k� − E�b
k��9� + 8b
k� − E�b
k��98E�b
k�� − β9� + 8E�b
k�� − β98b
k� −
E�b
k��9′ + 8E�b
k�� − β98E�b
k�� − β9′� 

 = V�b
k�� + Bias
b
k�, β�Bias
b
k�, β�� 
 = σ1G�X�XG� + 
−kβG��
−kβG��′ 
 = G�
σ1X�X + k1ββ′�G� 

 = :;()(+�;**�

()(+�,�;  

From the spectral decomposition of the symmetric matrix X�X	 we have that 

 X�X = PɅP� = Ʌ 

 G��� = X�X + kI = PɅP� + kPP′ = 
Ʌ + k� 
Note that PP� = I 
 G� = 
Ʌ + k���  
Therefore 

 M
b
k�, β� = :;Ʌ+�;**�

Ʌ+�,�; 																																																																																																																																																															8 

 trM
b
k�, β� = ∑ :;AB+�;*;

AB+��;

�CD� 																																																																																																																																																		9 

The scalar MDE of b
k� for fixed σ1 and a fixed vector β is a function of ridge parameter k, which starts at 

∑ :;
AB

�CD� = tr
V
b�� for k = 0, takes its minimum for k = kF�G and then increases monotonically, provided that kF�G < ∞  

(Rao and Toutenburg 1995) 

We now transform M
b, β� = M
b� = σ1
X�X��� as follows 

                  M
b� = σ1G��G���
X′X���G����G� 

    = σ1G�J
X�X + kI�
X′X���
X�X + kI�KG� 
 = σ1G�J
X′X�
X′X���
X′X� + 
X′X�
X′X���kI + kI
X′X���
X′X� + kI
X′X���kIKG� 

 = σ1G��
X′X� + k1
X′X��� + 2kI�G�																																																																																																																																			10 
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Definition 1:  Let β�� and β�1 be two estimators of β. Then β�1 is called MDE-superior to β�� (or β�1 is called MDE-

improvement to β��) if the difference of their MDE matrices is nonnegative definite, that is, if  

 ∆�β��, β�1	� = M�β��, β� − M�β�1, β� ≥ 0 

From definition 1 we obtain the interval 0 < k < k∗ in which the ridge estimator is MDE-superior to the OLS	b =

X′X���X′y. 

 ∆
b, b
k�	� = M
b� − M
b
k�, β� 
 = σ1G��
X′X� + k1
X′X��� + 2kI�G� − G�
σ1X�X + k1ββ′�G� 
 = σ1G�
X′X�G� + σ1G�k1
X′X���G� + σ1G�2kIG� − G�σ1X�XG� + G�k1ββ′G� 

 = kG�Jσ1
2I + k
X′X���� − kββ′KG�																																																																																																																																				11 

Since G� > 0, we have that ∆
b, b
k�	� ≥ 0 if and only if  

 σ1
2I + k
X′X���� − kββ′ ≥ 0 

 σ1
2I + k
X′X���� ≥ kββ�																																																																																																																																																							12 

Dividing through by kββ′ gives 

 
:;�1,+�
(�(�OP�

�**� ≥ 1 

 
�**�

:;
1,+�
(�(�OP� ≤ 1 

 σ�1kβ′
2I + k
X′X������β ≤ 1																																																																																																																																															13 

As a sufficient condition for (12), independent of the model matrix, we obtain 

 2σ1I − kββ′ ≥ 0 

 2σ1I ≥ kββ′ 

 k ≤ 1:;
**� 																																																																																																																																																																																										14 

The range of k, which ensures the MDE-1 superiority of  b
k� compared to b is dependent on σ��β and hence 

unknown. If auxiliary information about the length (norm) of β is available in the form 

 ββ′ ≤ r1 

then 

 k ≤ 1:;
R; 																																																																																																																																																																																										15 

is sufficient for (14) to be valid. Hence possible values for k, in which b
k� is better than b, can be found by estimation of 

σ1 or by specification of a lower limit or by a combined a priori estimation  σ1ββ′ ≤ rS1 

Swamy et al (1978) and Swamy and Mehta (1977) investigate the following problem 
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 TCU
* Vσ�1
y − Xβ��
y − Xβ�β′β ≤ r1W 

The solution to this problem 

 β�
μ� = 
X�X + σ1μI���X�y																																																																																																																																																							16 

is once again a ridge estimate and β�
μ�′β�
μ� = r1 is fulfilled. Replacing σ1 by the estimate s1 provided a practical solution 

for the estimator (16) but its properties can only be calculated approximately.  

Hoerl and Kennard (1970) derived the ridge estimator by the following reasoning. Let β� be any estimator and 

b = 
X′X���X′y the OLS estimator. Then the error sum of squares estimated with β� can be expressed, according to the 

property of optimality of b, as 

 S�β�� = �y − Xβ��′�y − Xβ��																																																																																																																																																							17 

         = 5
y − Xb� + X�b − β��6 ′ 5
y − Xb� + X�b − β��6 

         = 
y − Xb��
y − Xb� + �b − β���X�X�b − β�� + 2
y − Xb��X�b − β�� 

  = S
b� + Φ�β��																																																																																																																																																																												18 

noting that the term 

 2
y − Xb��X�b − β�� = 2
y − X
X′X���X′y�′X�b − β�� 

        = 2y
I − X
X′X���X′�X�b − β�� 

                      = 2MX�b − β�� = 0 

since MX = 0 

Let Φ[ > 0  be a fixed given value for the error sum of squares. Then a set 8β�9	estimate exists that fulfill the 

condition	S�β�� = S
b� + Φ[. In this set we look for the estimate with minimal length 

 TCU
*\ ]β� �β� + �

� 4�b − β���X�X�b − β�� −	Φ[7^ 																																																																																																																											19 

where  
�
�  is a Lagrangian multiplier. Differentiation of this function with respect to β�  and  

�
�  leads to the normal 

equations, 

let 

 TCU
*\ ]β� �β� + �

� 4�b − β���X�X�b − β�� −	Φ[7^ = L 

 
`a
`*\ = 2β� − 2 �

� �b − β��X�X = 0 

 2β� + 2 �
�X�X�β� − b� = 0 

Since 2≠ 0 



30                                                                                                                                       Okeke Evelyn Nkiruka & Okeke Joseph Uchenna 

 
Impact Factor (JCC): 2.0346                                                                                                                   NAAS Rating: 3.19 

 β� + �
�X�X�β� − b� = 0 

 β� + �
�X�Xβ� =

�
�X�Xb 

 β� 5��X�X + 16 = �
�X�Xb 

 β� 5(�(+�,� 6 = �
�X�Xb 

 β� = 
X′X + kI���X′Xb 

 = G�X�Xb																																																																																																																																																																																						20 

 
`a
`*\ = 5�b − β���X�X�b − β�� −	Φ[6 = 0 

 �b − β���X�X�b − β�� −	Φ[ = 0 

 Φ[ = �b − β���X�X�b − β��																																																																																																																																																								21 

Hence the solution of the equation (19) is the ridge estimator β� = b
k� in (20).  

Minimizing a penalized residual sum of squares the ridge estimator b
k� is 

 b
k� = argmin* f5yC − ∑ XCgβg�
gD� 61 + k∑ βg1�

gD� h 																																																																																																													22 

The ridge parameter k is to be determined iteratively so that (21) is fulfilled.   

Consider				yi
k� = Xb
k� to be estimated y. 

 	yi
k� = X
X′X + kI���X′y 

 = X
X′X���VI + k
X′X���W��X′y																																																																																																																																													23 

The sum of the squares of the deviation of the y’s from their fitted values is  

 �y − yi
k��′�y − yi
k��																																																																																																																																																														24 

2.1 BOOTSTRAP 

Bootstrapping describes how sample data can be handled to obtain reliable standard error, confidence interval and 

other measures of uncertainty for a wide range of problems. The key idea is to resample from the original data either 

directly or indirectly or via a fitted model-to create replicate dataset, from which variability of the quantity of interest can 

be assessed without longwinded and error analytical calculations. This process involved repeating the original data analysis 

procedure with many replicate sets of data. The initial reaction was that resampling from the original data is a fraud. But in 

fact it is not (Davision and Hinley 1985). It turns out that a wide range of statistical problems can be tackled this way, 

liberating the investigator from the need to oversimplify complex problems. Bootstrap methods are intended to help avoid 

tedious calculations based on questionable assumptions. But they cannot replace clear critical thought about the problem, 

appropriate design of the investigation, data analysis and incisive presentation of the conclusions. The methods can be 

applied when there is a well-defined probability model for the data and when there is not. There are four optional 



Bootstrapping in Determination of Ridge Parameter                              31 
 

 

www.iaset.us                                                                                                                                                     editor@iaset.us 

resampling schemes under bootstrap-classical bootstrap, smooth bootstrap, wild bootstrap, and residual-based (Bayesian) 

bootstrap Hall and Mammen (1994). In this article we wish to make use of classical bootstrap in forming samples from 

which different values of mean square error will be generated. 

The classical bootstrap may be thought of as rather a device for constructing a new data sequence having the same 

size as the original sample. All the member of the new sequence are drawn from the original sample, and are present in 

proportions which are determined by a uniform multinomial distribution on the original values. Of course, the later 

distribution is a consequence of the “random sampling with replacement” concept that underlies the classical bootstrap 

algorithm. Under classical bootstrap V
XC∗, yC∗�W�jCjU is taken at random from the original sample VXC , yCW�jCjU.This 

resampling method goes back to the pioneering work of Efron (1979) 

2.1.1 Statistical Error 

The basic idea of bootstrapping is to approximate the quantity q
f�	-such as var
β|f� by the estimateq�fn�, where fn 
is either a parametric or a nonparametric estimate of f based on the data	VXC, yCW�jCjU. The statistical error is then the 

difference between	q�fn�, and	q
f�. Bootstrap methods wish to minimize this error as far as possible or remove it entirely. 

3.0 NUMERICAL APPLICATION 

3.1 Data and its Description 

We applied ridge regression equation to a real data set, and five bootstrap samples generated from the real data 

set. Some arbitrary values of k were also considered to enable us determined how well the ridge parameter of the ridge 

regression can be chosen. The real life data we used were obtained from unpublished B.SC research project presented at 

the Department of Statistics, Nnamdi Azikiwe University, Awka, by Iteire (2004). The data were from Nigeria Stock 

Exchange and is on their transaction for the period of 1991-2007. The data was chosen because it is ill-conditioned. The 

predictor variables studied as affecting the response variable( market capitalization) includes-share volume index, share 

value index, daily average volume, daily average value, number of listed securities, all share index, and number of listed 

companies.  Below is the correlation matrix of the predictor variables. 

Correlations: shar vol, shar val, D Av vol, D.Av.val, N.lis sec., ...  

                           shar vol      shar val      D Av vol      D.Av.val   N.lis sec.  A sha ind.     

shar val                0.995 

D Av vol              0.999          0.998 

D.Av.val              0.993          1.000          0.997 

N.lis sec               0.605          0.585          0.596            0.581 

A sha ind.            0.923          0.893          0.910            0.883         0.636      

N.lis.comp           0.493          0.434          0.469            0.421         0.707              0.700    
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Observe that the presence of multicollinearity is highly pronounced in the correlation matrix above with two 

predictor variables being perfectly correlated. Two of the eigenvalues of X′X matrix are zero and it is the matrix smallest 

eigenvalue.  

4.0 RESULT 

Table 1: Residual Analysis of Real life and Bootstrap Samples 

Samples 

Mean Squared 
Error from 

Unstandardized  
Variables 

Residual 

Mean Squared 
Error from 

Standardized  
Variables 

Residual 

Real Data 103202 0.009051 0.9532. 60063335 
Bootstrap 
Sample1 

101 0.011234 0.9532 12738352.5 

Bootstrap 
Sample 2 

63867 0.009522 0.7990 87408183.4 

Bootstrap 
Sample 3 

576 3.412094 0.2228 1.26x108 

Bootstrap 
Sample 4 

2154 0.988904 1.557 2.24x109 

Bootstrap 
Sample 5 

135 0.011232 0.2469 1.27x178 

 

The sum of the squared of deviation of the y’s from their fitted values stated in (24) were calculated using 

different value of k obtained from (15). The variances were obtained from the estimated mean squared error of the real life 

and bootstrap data, before and after the data (X and Y) have been standardized. The result of analysis is presented in Table 

1 above. Table 1 shows that the biasing parameter is better estimated from the mean squared error of the original data as 

compared with different values obtained from the bootstrap samples when the data are not standardized. There is no 

definite order of choosing the appropriate values of k as one can observe from Table 1.    

Table 2: Residual Analysis from Arbitrary Values of k 

K Value Residual 
0 0.00832 

0.00001 0.00832 
0.006 0.01114 
0.05 0.01173 
1.0 0.52339 

 

 Table 2 shows, for some selected values of k, values of the residual sum of squares (17). In section 3.1, we made 

mention that the smallest eigenvalue of the X′X is zero, then observing what we have in Table 2, one  can see that as the 

value of the biased parameter k approaches zero (15) converges. Values of k that deviates much from the value of the 

smallest eigenvalue have large values of residual. 

5.0 CONCLUSIONS 

 Comparing the residual of Tables 1 and 2, we can state that the biasing parameter of ridge regression may better 

be determined through the use of X′X matrix. It is also observed that the smallest residual in Table 2 is very close to that of 
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Table 1. This is to say that both the mean squared error and the smallest eigenvalue of the predictor variables of the 

original data play vital role in determining the biased parameter of ridge regression.    
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