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ABSTRACT

This article studied the application of ridge resgien on multicollinear data whose ridge parametas
determined using bootstrap samples. Mean squaredarthe samples and some arbitrary values weeel to determine
the ridge parameter that will give the minimum desil. The result of the study revealed that bo¢hrtiean squared error
and the smallest eigenvalue of the predictor vésabf the original data play vital role in deteninig the ridge parameter

of ridge regression.
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1.0 INTRODUCTION

The observations in many experiments of physical amedical sciences are often ill-conditioned. Their
distribution can be highly skewed, they can havketliécker than that of normal distribution, anchdom samples often
have outliers and correlated variables. Outliemsyetated variables and heavy-tailed distributioa serious problems
because they inflate the standard error of thenestis, causing them to have relatively low powerelgression analysis,
when the predictor variables )@);1, ...,Xp) haveX'X that is of full rank least squares estimatorsustgally unbiased, The
Gauss-Markov property assures us that the LS etstirhas minimum variance in the class of unbiageehl estimators.
Ordinary least squares regression is usually aftedty outliers, multicollinearity, as well as ska&ver heavy tailed
distributions. When the method of least squarepdied to nonothogonal variables, very poor edtimaf the regression
coefficients are usually obtained. The variancéhefestimates of the regression coefficients maydmsiderably inflated,
and the length of the vector of coefficients tondan the average and very unstable. One of thermmtechniques to
overcome the difficulty of least squares when théads ill-conditioned is to drop the basic assuampbf regression
analysis that the estimators of regression coefiisi be unbiased. Ridge regression is one of thsediestimators of
regression coefficients that is applied to data sehpredictor variables haw€X matrix that is ill-conditioned (near
singular) or even singular (has zero eigenvaldasthis article ridge regression will be appliednbolticollinear real data

whose ridge parameter will be determined using $icap samples. j
2.0 RIDGE REGRESSION

A method of regression analysis that is effectiveéhie presence of multicollinearity was proposedmgrl and
Kennard (1970) and is called ridged regressionuésg that the data (X and Y) have been standaddibey suggested
that some constant values will be added to diageleahents of th&'X matrix of the predictor variables to have regmssi

coefficient that can be estimated from the modifiedmal equations, hereafter called ridged equation

(X'X + kDb(k) = X'y 1
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26 Okeke Evelyn Nkiruka & Okeke Joseph Uchenna

from which the regression coefficients can be estiaa.

Making b(k) the subject of the formula in (1) gives

b(k) = (X'X + kD)™ X'y 2

with k > 0, the nonstochastic quantity, being the ridge @mtml) parameter. Of cours®&(0) = b is the OLS

estimateb(k) = [b1 ), ..., by (k)]’ contain estimates of the parameters in the nardapt part of the model.
Multiplying both sides of (2) byX'X)~! we have that

bk) = I+ k&X)™HP 3

wherep denotes the LS estimate in standard form. Thetegqué) shows that the ridge estimator is biased a
the amount of bias depends on the ridge (or the@ymparameter k.

Using the abbreviation

G = (X'X + kD)™

4
E(b(k)), Bias(b(k), ) and V(b(k)) can be expressed as follows
E(b(k))
E(b(k)) = E((X'X + kD ™1X'y)\
= (X'X + kD IX'E(y)
= (X'X + kD)"IX'XB
= G X'XB 5
Bias(b(k), B)
Bias(b(k), B) = E(b(k) — B)
= Gy X'XB — B
= (XX +kDIX'XB — B
= e
_ X'XB-B(X'X+k)
(X' X+KI)
= —KBG, 6
V(b(k))

V(b(k)) = var((X'X + kD~X'y)
= var(GX'y)
:GkX'Var(y)XGk
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= O'ZGkX,XGk 7
Hence the Mean Dispersion Error (MDE) matrix is

M(b(k), B) = E(b(k) — B)(b(k) — B)’
= E[ (b0 ~ E(b() ) + (E(b0) — B)] [ (b0 ~ E(b(0)) + (E(b0) — )|

= E[{b(k) —E(b(®)}{bX) — E(b(K))} + {b(k) — E(b()HE(b(K)) — B} + {E(b(K)) — B}{b(k) —
E(b()} +{E(b() - BHE(b(0)) - B}]

= V(b(k)) + Bias(b(k), B)Bias(b(k), B)’

= 062G X'XGy, + (—kBGy) (—kBGy)’

= G (62X'X + k2BB")Gy

_ o2X'X+K2ppr
T (X'X+kI)2

From the spectral decomposition of the symmetritrin&'X we have that
X'X=PAP' = A
G ' =X'X+KIl=PAP' + kPP’ = (A +k)

Note thatPP’ =1

Gk = (A + k)_l
Therefore
M(b(k), ) = ZAHBE 8
’ (A+KD)2
2)+k2 B2
trM (b(k)l B) = %(=1 G()‘i_'_k)z 9

The scalar MDE ob(k) for fixed 62 and a fixed vectof is a function of ridge parameter k, which staits a

Z};f;—? = tr(V(b)) for k = 0, takes its minimum fok = k,,, and then increases monotonically, provided kgt < oo

(Rao and Toutenburg 1995)
We now transfornM (b, B) = M(b) = o?(X'X)~! as follows
M(b) = 062Gy (G (X'X) 716Gy ) Gy
= 02G [(X'X + KD(X'X) "1 (X'X + KI)] Gy
= 062G [(X'X) (X'X) "1 (X'X) 4+ (X'X)(X'X) KT + KI(X'X) "1 (X'X) + KI(X'X) ~1KI] Gy,

= 02G((X'X) + K2(X'X) ™t + 2kI)Gy 10
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Definition 1: Let 3, andf, be two estimators ¢§. Thenf, is called MDE-superior tB, (or 8, is called MDE-

improvement t@, ) if the difference of their MDE matrices is nonaéige definite, that is, if
A(Gp Gz ) = M(Gl' B) - M(Gz' B) =0

From definition 1 we obtain the interval< k < k* in which the ridge estimator is MDE-superior te LSb =
XX)"X'y.

A(b,b(k) ) = M(b) — M(b(k), B)

= 062G ((X'X) + K2(X'X) ™t + 2kI)Gy — Gy (02X'X + k?BB") Gy

= 062G (X'X) Gy + 02Gk?(X'X) ™16y + 062Gy 2KIGy, — G 02X'XGy + G k?BPB' Gy

= kG [02 (21 + k(X'X)™1) — kBP']1Gy 11

SinceGy > 0, we have thaa(b,b(k) ) = 0 if and only if

oI+ kX'X)™) —kBp' =0

o%(21 + k(X'X)™1) > kBp’ 12
Dividing through bykpB’ gives

o2 (21+kXrX)71)

kBB’ 21

I
o2 (2I+k(XrX)~1)

o 2kB'RI+ kXX)™H <1 13
As a sufficient condition for (12), independentloé model matrix, we obtain
2021 — kBB’ = 0
20%1 = kBp'
k<=— 14
The range of k, which ensures the MDE-1 superiasityb(k) compared to b is dependent on'3 and hence
unknown. If auxiliary information about the lendtiorm) of is available in the form
Bp < r?
then

k<— 15

is sufficient for (14) to be valid. Hence possikiues for k, in whictb(k) is better than b, can be found by estimation of

o2 or by specification of a lower limit or by a combil a priori estimatiors?pg’ < 72

Swamy et al (1978) and Swamy and Mehta (1977) tigege the following problem
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Moy — XB)' (v — XB)B'B < r?}
The solution to this problem
Bw = XX+ o u) X'y 16

is once again a ridge estimate g{d)'B(uw) = r? is fulfilled. Replacings? by the estimate? provided a practical solution

for the estimator (16) but its properties can dygycalculated approximately.

Hoerl and Kennard (1970) derived the ridge estimhgothe following reasoning. L€t be any estimator and
b = (X'’X)~!X'y the OLS estimator. Then the error sum of squastisated withf can be expressed, according to the

property of optimality of b, as
S(B) = (y — XB)'(y — XB) 17
= (y—x0) +X(b—B))" (v = Xb) + X(b - B))
= (y — Xb)'(y — Xb) + (b — B) X'X(b — B) + 2(y — Xb)'X(b — B)
=S(b) + ®(B) 18
noting that the term
2(y — Xb)'X(b — B) = 2(y — XX'X)"X'y)'X(b — B)
= 2y(1 = XX'X)"XHX(b - B)
=2MX(b-B) =0
sinceMX = 0

Let ®, > 0 be a fixed given value for the error sum of sgeaThen a se{tﬁ} estimate exists that fulfill the

conditions(B) = S(b) + ®,. In this set we look for the estimate with minirteigth

i 515 1 S\ <r ~
mr BB+ <[ (b—B)X'X(b - B) — @0} 19
where % is a Lagrangian multiplier. Differentiation ofisifunction with respect tf and i leads to the normal
equations,
let

B+ [0 - B - B) - o)=L

g—'ﬁ“zzﬁ—zi(b—ﬁ)x’xz 0
2B+ 2. X'X(B—b) =0

Since 2 0
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B+IXX(B-b) =0

Brxx+ 1) = 1X'Xb

bR =

B = X'X+KkDX'Xb

= G X'Xb 20

5= (E-B)Xx(b-B) - @) =0

(b-B)X'X(b—B)— dy=0
@, = (b-pB)X'X(b—-B) 21
Hence the solution of the equation (19) is theaidgtimato = b(k) in (20).

Minimizing a penalized residual sum of squaresritige estimatob(k) is

b(k) = argming {(yi - z}’zlxijﬁj)z +kE, B,-Z} 22

The ridge parameter k is to be determined iterbtise that (21) is fulfilled.

Consider §(k) = Xb(k) to be estimated y.

$(k) = X(XX + k)" Xy

= XXX)"HI + kXX)"} Xy 23

The sum of the squares of the deviation of thdrgm their fitted values is

(v =90)) (v - 900) 24
2.1 BOOTSTRAP

Bootstrapping describes how sample data can bdddhtal obtain reliable standard error, confidenterival and
other measures of uncertainty for a wide rangeroblems. The key idea is to resample from the palgdata either
directly or indirectly or via a fitted model-to @ replicate dataset, from which variability o thuantity of interest can
be assessed without longwinded and error analytedallations. This process involved repeatingdtiginal data analysis
procedure with many replicate sets of data. Thealmeaction was that resampling from the origidata is a fraud. But in
fact it is not (Davision and Hinley 1985). It turpsit that a wide range of statistical problems bartackled this way,
liberating the investigator from the need to ovwersify complex problems. Bootstrap methods areridésl to help avoid
tedious calculations based on questionable assongptBut they cannot replace clear critical thowmtdut the problem,
appropriate design of the investigation, data asiglgnd incisive presentation of the conclusiori®e Tethods can be

applied when there is a well-defined probability debfor the data and when there is not. There atg bptional
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resampling schemes under bootstrap-classical baptstmooth bootstrap, wild bootstrap, and resitbaakd (Bayesian)
bootstrap Hall and Mammen (1994). In this article wish to make use of classical bootstrap in fogreamples from

which different values of mean square error willgemerated.

The classical bootstrap may be thought of as ratltsvice for constructing a new data sequencenpdkie same
size as the original sample. All the member of b sequence are drawn from the original sample,aae present in
proportions which are determined by a uniform nmalthial distribution on the original values. Of ceey the later
distribution is a consequence of the “random sampWith replacement” concept that underlies thessital bootstrap
algorithm. Under classical bootstrdi§X{,yi)}:<i<n IS taken at random from the original samghg,y;};<i<q-This

resampling method goes back to the pioneering wbEfron (1979)

2.1.1 Statistical Error
The basic idea of bootstrapping is to approximagequantityq(f) -such asrar(g|f) by the estimatﬁ(?), wheref
is either a parametric or a nonparametric estinofté based on the dafX;, y;},<i<n. The statistical error is then the

difference betweeq(f), andq(f). Bootstrap methods wish to minimize this errofaasas possible or remove it entirely.

3.0 NUMERICAL APPLICATION
3.1 Data and its Description

We applied ridge regression equation to a real setaand five bootstrap samples generated frometiledata
set. Some arbitrary values of k were also consitiéreenable us determined how well the ridge patamaf the ridge
regression can be chosen. The real life data we weee obtained from unpublished B.SC researchreptgjresented at
the Department of Statistics, Nnamdi Azikiwe Unaigr, Awka, by Iteire (2004). The data were fromghlia Stock
Exchange and is on their transaction for the peoib#i991-2007. The data was chosen because Itderitlitioned. The
predictor variables studied as affecting the respovariable( market capitalization) includes-shaskime index, share
value index, daily average volume, daily averageiesanumber of listed securities, all share indexd number of listed

companies. Below is the correlation matrix of pnedictor variables.
Correlations: shar vol, shar val, D Av vol, D.Av.vd N.lis sec., ...

shar vol shar valD Av vol D.Av.val N.lis sec. A sha ind.

shar val 0.995

D Av vol 0.999 0.998

D.Av.val 0.993 1.000 0.997

N.lis sec 0.605 0.585 0.596 0.581

A sha ind. 0.923 0.893 0.910 0.883 0.636
N.lis.comp 0.493 0.434 0.469 0.421 0.707 700
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Observe that the presence of multicollinearity ighly pronounced in the correlation matrix abovehwiwo
predictor variables being perfectly correlated. Toefdhe eigenvalues df'X matrix are zero and it is the matrix smallest

eigenvalue.
4.0 RESULT

Table 1: Residual Analysis of Real life and Bootstép Samples

Mean Squared Mean Squared

Error from . Error from .
Samples Unstandardized Residual Standardized Residual

Variables Variables
Real Data 103202 0.009051 0.9532. 60063335
Bootstrap 101 0.011234 0.9532 12738352/5
Samplel
Bootstrap 63867 0.009522 0.7990 87408183.4
Sample 2
Bootstrap 576 3.412094 0.2228 1.26¥10
Sample 3
Bootstrap 2154 0.988904 1,557 2.24¥10
Sample 4
Bootstrap 135 0.011232 0.2469 12787
Sample 5

The sum of the squared of deviation of the y’s frtvair fitted values stated in (24) were calculatesing
different value of k obtained from (15). The vadaa were obtained from the estimated mean squaredod the real life
and bootstrap data, before and after the data @Xyarhave been standardized. The result of analygisesented in Table
1 above. Table 1 shows that the biasing parameteetier estimated from the mean squared errdreobtiginal data as
compared with different values obtained from thetbtvap samples when the data are not standardizezie is no

definite order of choosing the appropriate valuels @s one can observe from Table 1.

Table 2: Residual Analysis from Arbitrary Values ofk

K Value | Residual
0 0.00832
0.00001 | 0.00832
0.006 0.01114
0.05 0.01173
1.0 0.52339

Table 2 shows, for some selected values of kegtf the residual sum of squares (17). In se@idnwe made
mention that the smallest eigenvalue of X% is zero, then observing what we have in Tablen2 @an see that as the
value of the biased parameter k approaches zenoc@®serges. Values of k that deviates much froewhlue of the

smallest eigenvalue have large values of residual.
5.0 CONCLUSIONS

Comparing the residual of Tables 1 and 2, we tate shat the biasing parameter of ridge regressian better

be determined through the useXat matrix. It is also observed that the smallestchesi in Table 2 is very close to that of
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Table 1. This is to say that both the mean squareat and the smallest eigenvalue of the predictoiables of the

original data play vital role in determining thebéd parameter of ridge regression.
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